

Software Reliability Corroboration

Carol Smidts**, Bojan Cukic, Erdogan Gunel*, Ming Li**, Harshinder Singh*, Lan Guo

Lane Department of Computer Science and

Electrical Engineering
* Department of Statistics
West Virginia University

Morgantown, WV 26506-6109
E-mail: {cukic,lan}@csee.wvu.edu, {egunel,

hsingh}@stat.wvu.edu

** Reliability Engineering Program
Department of Materials and Nuclear

Engineering
University of Maryland

College Park, MD 20742
E-mail: {csmidts,mli}@eng.umd.edu

1. Introduction

Software reliability is a quantitative measure of
software quality. It is defined as a probability of
failure free execution given a specific environment
and a fixed time interval. The goal of software
reliability assessment is not just to estimate the
failure probability of the program, θ, but to gain
statistical confidence that θ is realistic. In practice,
the required failure probability θ0 and the confidence
level C are application specific and predefined.

The input domain reliability assessment approach
defines the reliability of a program as the probability
of failure free operation for specific inputs [3].
Program P is seen as a function that maps all the
elements of the multidimensional input space I into
the output space O. The inputs that activate faults in
the program are mapped into failures, i.e., incorrect
outputs.

The traditional theory behind input domain models

assumes that the certification testing process starts
with "zero knowledge" about the system under test.
In other words, all the observations collected during
the development and verification and validation
activities, such as inspections and reviews, module
testing, formal analysis, engineering observations and
judgments, etc., play no role in reliability
certification. Consequently, the most important
drawback of the input domain models is an enormous
amount of testing (statistically independent
executions of test cases) needed to attain a modest
confidence that moderate software reliability has
been achieved.

Process improvements and adherence to maturity

models enable the production of software with
repeatable quality [7, 9]. Ignoring process and
product quality measurements collected throughout

the development lifecycle in the software reliability
certification phase is a mistake. On the other hand,
reliability prediction models based on process and
product measurements alone may not be sufficiently
accurate [8, 15]. These predictions need
corroboration. If during the certification testing we
assume a limited belief in the accuracy of early
assessment models then the main drawback of input
domain reliability assessment models, the
impractically large number of statistical tests,
disappears. In other words, it is faster to confirm an
existing belief (that the program is reliable enough)
than to establish this belief by assuming nothing. In
this paper, we describe the statistical theory behind
software reliability corroboration. We believe that
this approach has the long term potential to make
software certification of high assurance systems
practical.

The rest of the paper is organized as follows.

Section 2 overviews traditional input domain based
software reliability assessment models and their
limitations. In Section 3, Bayesian hypothesis testing
is presented. Section 4 describes an application of
the theory to a small control software. The priors
used are borrowed from a study on software
engineering measures and their relationship to
reliability. Section 5 summarizes our findings and
provides directions for future work.

2. Input Domain Based Models:

Background and Limitations

An intuitive measure of software reliability is the
proportion of test cases that result in correct outputs.
If n represents the total number of test cases and nf
the number of detected failures, the estimated
reliability according to the Nelson model [16], is

mailto:{csmidts,mli}@eng.umd.educsee.wvu.edu

.1ˆ
n
n

n
nn

R ff −=
−

=

When an indefinite number of test runs is taken,

 ,1ˆ lim n
n

R f

n ∞→
−=

the fraction nf/n in its limit represents the estimated
probability of failure in a single run of the program.
This leads to the reliability prediction based on the
probability of correct execution in each run. Thus, the
probability of correct execution over i runs is given
by

.)ˆ()(iRiR =
)

A sound foundation for reliability assessment in the
input domain is provided by statistical sampling
theory [3]. A program under test separates the input
domain into two disjoint classes: inputs that are
correctly and those that are incorrectly mapped into
the corresponding outputs. Testing can be simulated
by randomly drawing balls from an urn containing
black balls (test cases in the input space I resulting in
a failed execution) and white balls (correct
executions). Consequently, from the statistical
viewpoint, each test case is a Bernoulli trial, and the
model is frequently called the sampling model. Since
input domains are large, the likelihood of selecting
the same test case i is small. Thus, reliability
estimation assumes sampling with replacement in
which nothing precludes repetition of a test case, but
it is simpler (and cheaper) to implement. Due to the
use of statistical sampling, authors often introduce
statistical terminology [3, 17]. For example, the set of
points in the input space is called the population,
while the number of executed test cases during
program testing is called the sample size.

Reliability assessment of software systems based on
statistical sampling is performed in the certification
phase of the software life-cycle. Faults are not
removed when discovered. Rather, in the extreme
case when ultra-high reliability is required, the
program is rejected. Eventual assessment of the
corrected program must be restarted from the
beginning [13]. Often, it is unlikely that the program
will fail during the certification testing, possibly due
to the use of formal methods, fault prevention, and
other techniques. Research has been performed
concerning the difficult problem of estimating the
probability of failure when a program does not fail.
Classic statistical work dating back to Laplace states
that when t white balls and no black balls are drawn
from the urn containing an unknown proportion of
black and white balls, the probability of drawing a
black ball next (representing the probability of failure

in a single run of the program) is .
2

1
+t

 The above

result is known as Laplace rule of succession [5]. It
means that failure-free testing relates the estimated
probability of failure to the number of test cases. In
order to establish the probability of failure at less
than, say, 10-9 failures per hour, one needs to test the
program for 109 hours (approximately 114,000 years)
[4]. Limited improvement is achievable through the
acceleration of testing. The second possibility for
improvement is making prior assumptions about the
failure probability [6], as presented in later sections.
The central question is how much testing should be
conducted?

3. Bayesian Hypothesis Testing
Let 0<θo<1 be a sufficiently small number close to
zero that represents the required system reliability
and let C represent the confidence level. Let us
consider the null hypothesis Ho: θ≤θo and the
alternative hypothesis H1: θ>θo. The null hypothesis
states that the program's true reliability (which is
unknown, i.e., being estimated) is higher than
required, whereas H1 states the opposite, i.e., the
system should not be released. In classical statistics a
statistical hypothesis testing procedure is evaluated in
terms of the Type I and Type II error probabilities.
Type I error occurs when Ho is rejected when it is
true and Type II error occurs when Ho is accepted
when it is not true. In Bayesian analysis the task of
deciding between Ho and H1 is conceptually more
appealing and, at the same time, more
straightforward. We simply compute

P(θ≤θo | Test data),

the so called posterior probability of the null
hypothesis Ho. The conceptual advantage is that the
posterior probability reflects the prior opinions (the
opinions about θ prior to certification testing of the
program) and the results of the actual certification
test. Let P(Ho) and P(H1), where P(Ho)+P(H1)=1,
denote the prior probabilities assigned to the null and
the alternative hypothesis. In practice, it may be
difficult to obtain these probabilities, as discussed in
the next section. Then,

O(Ho)= P(Ho) / P(H1)
is called the prior odds of Ho to H1 and

O (Ho | Test Data) =

P (Ho | Test Data) / P (H1 | Test Data)

is called the posterior odds ratio of Ho to H1. The
Bayes factor F(Ho, H1) is defined as the ratio of

posterior odds to prior odds in favor of the null
hypothesis,

F(Ho, H1)= O(Ho | Test Data) / O(Ho) .

If the Bayes factor F(Ho, H1) is greater than one then
we have evidence in favor of the null hypothesis and
if it is less than one we have evidence against the null
hypothesis. If the Bayes factor is equal to one then
we do not discriminate between the null and the
alternative hypothesis. The posterior probability of
Ho can be written in terms of the prior probability of
Ho and the Bayes factor,

P(Ho|Test Data)=

P(Ho)F(Ho, H1) / [P(Ho)F(Ho, H1)+(1-P(Ho)] .

During certification testing, program executions
either result in a success or in a failure. An important
factor determining our ability to corroborate the null
hypothesis is the number of failures in n tests of the
program. We are interested in finding the overall
number of certification tests, given the number of
failures observed in certification, such that

P(Ho | Test Data)= C,

where C represents the required confidence level.

In Table 1, we give the number of required
certification tests, assuming C=0.99, when no
failures are encountered (column n0), one failure is
encountered (column n1) and when two failures are
encountered (column n2), for some selected values of
θo and P(Ho).

A note of caution is appropriate here. This section
presents a simple overview of the reasoning and
justification behind the Bayesian hypothesis testing
approach to determine the number of “software
reliability corroboration tests”. In theory, the prior
beliefs in the null hypothesis and its alternative need
to be provided as probability distributions of software
failures over intervals (θo, 1) and (0, θo), respectively.
In Table 1, our assumption is that the distribution of
θ under Ho and H1 is uniform. This by no means
represents model limitation, since the theory behind
this framework allows for any distribution.

Table 1. The number of tests required for
reliability corroboration according to Bayesian
hypothesis testing theory.

θθθθ οοοο P(H o) n o n 1 n 2
0.01 0.01 457 476 497

0.001 0.01 2378 2671 2975

0.0001 0.01 6831 10648 14501

0.00001 0.01 9349 33176 63649

0.000001 0.01 9752 101273 282007

0.01 0.02 388 410 433

0.001 0.02 1766 2098 2438

0.0001 0.02 3954 7549 11315

0.00001 0.02 4736 23037 49499

0.000001 0.02 4838 70800 221022

0.01 0.1 228 258 289

0.001 0.1 636 1017 1402

0.0001 0.1 853 3157 6150

0.00001 0.1 886 9646 27281

0.000001 0.1 890 30067 123725

0.01 0.4 90 128 167

0.001 0.4 138 411 739

0.0001 0.4 146 1251 3260

0.00001 0.4 147 3889 14724

0.000001 0.4 147 12222 67468

0.01 0.6 50 87 126

0.001 0.6 63 269 552

0.0001 0.6 65 827 2458

0.00001 0.6 65 2584 11173

0.000001 0.6 65 8139 51351

A closer look at the values in Table 1 reveals the
strongest possible motivation for the software
reliability corroboration approach. For θο=10-2 and
P(H0)=0.4, for example, if after 90 tests there is no
failure then we are 99% confident that θ≤10-2. If
after 128 tests there has been one failure observed
then we are 99% confident that θ≤10-2. If after 167
tests there are 2 failures then we are, again, 99%
confident that θ≤10-2.

4. Predicting Software Reliability Prior to
Certification

4.1. Priors Based on Software Engineering
Measures

To be able to apply the framework discussed in
Section 3 acceptable priors need to be identified and
or developed. A possible source of priors is the set of
priors that can be developed from software
engineering measures such as fault density,
cyclomatic complexity, requirements traceability, etc.
In a study carried out for the U.S. Nuclear Regulatory
Commission, 40 software engineering measures were
ranked with respect to their ability to predict
reliability [11, 14] for different phases of the life-
cycle.

An initial validation of this ranking was performed in
a follow-up study [10]. The study involved the
following software engineering measures:
requirements traceability, function points, bugs per
line of code (Gaffney estimate), fault density and test
coverage. To validate the ranking estimations of
reliability were built based on these measurements.
The validation study was limited to the testing phase
and the estimates were used to predict reliability in
operation. The application studied was a small
control software, PACS. PACS is a simplified
version of an automated personnel entry access
system (gate) used to provide privileged physical
access to rooms/buildings [1].

 Figure 1. Reliability Prediction System (RPS).

The estimates were built using the concept of
Reliability Prediction System (RPS). A RPS is a
complete set of measures by which reliability can be
predicted. The RPS is composed of a root measure
and several support measures as shown in Figure 1.
In Table 2 we provide the RPS for the measure “Test
Coverage” as well as the model used to transform the
measurements (the root and support measures) into a
reliability prediction. Table 3 gives predictions for θ
derived from the 5 measures considered in the
validation study.

Table 2. RPS for “Test Coverage”

Measure Model

Test
coverage))1(1ln(

2
10

0

−+

×−
×+
×+

= MFPkILOC
MFPkTLOCaL

eaa

N
T
K

s ep

τ

RPS Notation

Root measure: test
covera
ge

Support measure:
• Implement

ed LOC (LOCI)
• Tested

LOC (LOCT)
• The

number of defects
found by test (N0)

• Missing
function point (FPM)

• Backfiring
coefficient (k)

• Defects
found by test (DT)

• Linear
execution time (TL)

• Execution
time per demand (τ)

• Fault
exposure ratio (K)

C0 defect coverage
C1 test coverage (statement

coverage)
a0,a1,a2 coefficients
N0 the number of defects

found by test
N the number of defects

remaining
K fault exposure ratio
TL linear execution time
τ the average execution

time per demand

Table 3. Predicted θθθθ Values

Measure θ
Defect density 0.078
Test coverage 0.092
Requirements traceability 0.078
Function point 0.0020
Bugs per line of code (Gaffney estimate) 0.000028

4.2. From Priors to P(H0)

The next step is to derive a value for P(H0) from the
prior estimates given in Table 3. Let us assume for
the purpose of this paper that 20 is equal to 9x10-2.
Each of the probability estimates in Table 3 is the
solution of a model based on a different RPS. This
model, say the ith model Mi is a function of given
measurements m(Mi) and parameters N(Mi). Consider
for instance the model built for “Test Coverage”.
This model is a function of the measures
m(Mi)={Implemented LOC, Tested LOC, Missing
Function Point, Backfiring Coefficient, Defects
Found by Test, Linear Execution Time, Execution
Time Per Demand, Fault Exposure Ratio} and the
parameters N(Mi)={a0, a1, a2}.

Reliability

Root
Measure

Support
Measure

2

Support
Measure

1

Support
Measure

n

Model

The estimate of interest is U(20-2) (i.e. whether or
not the null hypothesis is satisfied) where U stands
for the step function: U(x-x0) = 1 for x ≥ x0 and 0
otherwise.

The expected value of the unknown U(20-2), E(U(20-
2)) is thus given by:

)()]()())(),(,(([

)())((

1
0

00

i

n

i
iiiii MpMdMdmMMmMU

HPUE

∑ ∫∫
=

−

==−

φφθθ

θθ

where

θ(Mi, m(Mi), φ(Mi)) is the probability of failure
estimate, solution of model Mi given measurements
m(Mi) and model parameters φ(Mi) and p(Mi) is the
probability that model Mi is correct. The concept of a
correct model is not a new concept. Indeed it is
borrowed from the model uncertainty literature. For
more details on this topic the reader is referred to [2,
12].

In this paper the possible contributions of parameters’
and measurements’ uncertainty are neglected. Future
research will investigate their impact in detail.

On the other hand, estimates of p(Mi) can be obtained
readily from the expert opinion elicitation process
performed in the NRC study. Indeed, one of the
criteria considered during the process is the
“Relevance To Reliability” criterion. This criterion
assesses the perceived “distance” between a root
measure and reliability and is thus an indicator of the
correctness of the model derived from this measure.
The value of the criterion “Relevance to Reliability”
is given in Table 4 for the five measures under
consideration. The value p(Mi) is obtained by simple
normalization over the spectrum of available models.
From the values of p(Mi) in Table 4, the values of 2
in Table 3 and the equation used to calculate E(U(20-
2)), we obtain p(H0)= 0.61.

A simple reference to Table 5 shows that for 20 =
9x10-2 the number of test cases has been reduced
from > 72 to 20 when no failures are observed during
testing.

Table 4. The value of Relevance to Reliability

Measure Relevance to
Reliability

Code defect density 0.85
Test coverage 0.83
Requirements traceability 0.45
Function point analysis 0.00

Bugs per line of code (Gaffney estimate) 0.00

Table 5. The number of tests required for 22220 =
9x10-2, C=0.99

θθθθ οοοο P(H o) n o
0.09 0.01 72

0.09 0.1 47

0.09 0.2 39

0.09 0.5 25

0.09 0.61 20

6. Summary

We presented two different statistical frameworks
for quantification of software reliability based on
input domain modeling. The quantification of
reliability is obtained either through the sampling
model and Bayesian hypothesis testing. The Bayesian
framework allows the inclusion of “qualitative”
verification and validation activities performed
during system’s development in terms of prior failure
probabilities. These approaches are suitable for our
"reliability corroboration" paradigm. To the best of
our knowledge this is the first occasion that Bayesian
hypothesis testing is proposed for the modeling of
software reliability.

The significance of the Bayesian hypothesis testing

framework for software reliability corroboration is in
the reasonable number of tests that it prescribes for
software certification. This is especially obvious in
the case of high assurance systems, which for all
practical purposes, are considered impossible to
certify by today's standards. While this methodology
per se does not make systems more reliable than they
already are, it provides a framework for
quantification of otherwise qualitative software
certification processes.

It comes as no surprise that programs developed in

stable and mature development environments, which
support measurement and process improvement
feedback throughout the lifecycle, will require a
fewer number of tests for certification. Ultimately,
only such environments should be used for high
assurance system development. But, as Table 1
indicates, a failure encountered in certification testing
imposes a steep economic penalty, because tens of
thousands of additional tests may become required.

Regardless of its elegance, the Bayesian hypothesis

testing framework for software reliability
corroboration may make the practice of software

certification risky if applied inappropriately. The
basic current problem is the immaturity of methods
for evaluating the precision and trust assigned to pre-
certification software reliability beliefs. We have
presented an approach to the estimation of prior
beliefs based on the RPS theory. This work needs to
be pursued. Indeed, the theory should be extended to
other software engineering measures, other life-cycle
phases. Finally, we need to consider the impact of
uncertainties in the measurements and the parameters
of the models.

Acknowledgements

This work was supported in part by the NSF
CAREER award to the first author and in part by
NASA, through cooperative agreement #NCC 2-979
and NRC through Contract #DR-01-0198.

References
[1] "PACS Requirements Specification," Lockheed

Martin Corporation Inc., Gaithersburg, MD July
20 1998.

[2] G. Apostolakis, "The Concept of Probability in
Safety Assessments of Technological Systems,"
Science, vol. 250, no.4986 pp. 1359-64, 1990.

[3] F. B. Bastani and A. Pasquini, "Assessment of a
Sampling Method for Measuring Safety-Critical
Software Reliability," presented at The 3rd
International Symposium on Software Reliability
Engineering, Monterey, CA, 1994.

[4] R. W. Butler and G. B. Finelli, "The Infeasibility
of Quantifying the Reliability of Life-Critical
Real-Time Software," IEEE Transactions on
Software Engineering, vol. 19, no.1 pp. 3-12,
1993.

[5] G. Cochran, Sampling Techniques. New York:
John Wiley & Sons, 1977.

[6] B. Cukic and D. Chakravarthy, "Bayesian
Framework for Reliability Assurance of a
Deployed Safety-Critical System," presented at
The 5th International Symposium on High
Assurance Systems (HASE 2000), Albuquerque,
NM, 2000.

[7] M. S. Deutsch, Software Verificaiton and
Validation: Realistic Project Approaches.
Englewood Cliffs, NJ: Prentice Hall, 1982.

[8] N. E. Fenton and M. Neil, "A Critique of
Software Defect Prediction Models," IEEE
Transactions on Software Engineering, vol. 25,
no.5 pp. 675-89, 1999.

[9] C. Jones, "The Pragmatics of Software Process
Improvements," Software Engineering Technical
Council Newsletter, vol. 1, no.3 pp. 269-75,
1996.

[10] M. Li, "On the Nature of Relationships Between
Measures and Reliability", Materials and Nuclear
Engineering, University of Maryland, College
Park, 2002

[11] M. Li and C. Smidts, "Ranking Software
Engineering Measures Related to Reliability
Using Expert Opinion," presented at The 11th
International Symposium on Software Reliability
Engineering, San Jose, California, 2000.

[12] A. Mosleh, N. Siu, C. Smidts, and C. Lui,
"Model Uncertainty: Its Characterization and
Quantification," in International Workshop
Series on Advanced Topics in Reliability and
Risk Analysis. Annapolis, Maryland: Center for
Reliability Engineering, University of Maryland,
1995.

[13] D. L. Parnas, A. J. Van Schouwen, and S. P.
Kwan, "Evaluation of Safety-Critical Software,"
Communications of the ACM, vol. 33, no.6 pp.
636-48, 1990.

[14] C. Smidts and M. Li, "Software Engineering
Measures for Predicting Software Reliability in
Safety Critical Digital Systems," University of
Maryland, Washington D.C. NUREG/GR-0019,
November 2000.

[15] C. Smidts, M. Stutzke, and R. W. Stoddard,
"Software Reliability Modeling: An Approach to
Early Reliability Prediction," IEEE Transactions
on Reliability, vol. 47, no.3 pp. 268-78, 1998.

[16] T. A. Thayer, M. Lipow, and E. C. Nelson,
Software Reliability. Amsterdam: North-Holland
Publishing, 1978.

[17] J. M. Voas, C. C. Michael, and K. W. Miller,
"Confidentially Assessing a Zero Probability of
Softare Failure," High Integrity Systems, vol. 1,
no.3 pp. 269-75, 1995.

	Acknowledgements
	References

